
Enjoying Web
Development with

Wicket
By

Kent Ka Iok Tong

Copyright © 2007

TipTec Development

Publisher: TipTec Development
Author's email: freemant2000@yahoo.com
Book website: http://www.agileskills2.org
Notice: All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher.

ISBN: 978-99937-929-0-1
Edition: First edition Nov. 2007

Enjoying Web Development with Wicket 3

Foreword

How to create AJAX web-based application easily?
If you'd like to create AJAX web-based applications easily, then this book is for
you. More importantly, it shows you how to do that with joy and feel good about
your own work! You don't need to know servlet or JSP while your productivity
will be much higher than using servlet or JSP directly. This is possible because
we're going to use a library called Wicket that makes complicated stuff simple
and elegant.

How does it do that? First, it allows the web designer to work on the static
contents and design of a page while allowing the developer to work on the
dynamic contents of that page without stepping on each other's toes; Second, it
allows developers to work with high level concepts such as objects and
properties instead of HTTP URLs, query parameters or HTML string values;
Third, it comes with powerful components such as calendar, tree and data grid
and it allows you to create your own components for reuse in your own project.

However, don't take our word for it! This book will quickly walk you through real
world use cases to show you how to use Wicket and leave it up to you to judge.

How this book can help you learn Wicket?
• It has a tutorial style that walks you through in a step-by-step manner.

• It is concise. There is no lengthy, abstract description.

• Many diagrams are used to show the flow of processing and high level
concepts so that you get a whole picture of what's happening.

• Free sample chapters are available on http://www.agileskills2.org. You can
judge it yourself.

Unique contents in this book
This book covers the following topics not found in other books on Wicket:

• How to create robust, scalable and maintainable enterprise applications with
Wicket.

• How to do test-driven development (TDD) with Wicket.

• How to use JPA, Hibernate and Spring with Wicket.

4 Enjoying Web Development with Wicket

Target audience and prerequisites
This book is suitable for those learning how to develop web-based applications
and those who are experienced in servlet, JSP, Struts and would like to see if
Wicket can make their jobs easier.

In order to understand what's in the book, you need to know Java, HTML and
some simple SQL. However, you do NOT need to know servlet, JSP, Tomcat,
Spring, JPA or Hibernate.

Acknowledgments
I'd like to thank:

• The Wicket team for creating Wicket.

• Helena Lei for proofreading this book.

• Eugenia Chan Peng U for doing book cover and layout design.

Enjoying Web Development with Wicket 5

Table of Contents
Foreword...3

How to create AJAX web-based application easily?..................3
How this book can help you learn Wicket?................................3
Unique contents in this book..3
Target audience and prerequisites...4
Acknowledgments...4

Chapter 1 Getting Started with Wicket...11
What's in this chapter?...12
Developing a Hello World application with Wicket...................12
Installing Eclipse...12
Installing Tomcat..12
Installing Wicket..14
Creating a Hello Word application..14
Generating dynamic content..23
Common errors in Wicket applications....................................25
More rigorous version of the template......................................27
Simpler version of the template..27
Page objects are serializable...28
Debugging a Wicket application...29
Summary..32

Chapter 2 Using Forms...35
What's in this chapter?...36
Developing a stock quote application.......................................36
Mismatch in component hierarchy..42
Using a combo box...42
Inputting a date...46
Displaying feedback messages..49
Marking input as required...51
Using the DatePicker..55
Summary..57

Chapter 3 Validating Input..59
What's in this chapter?...60
Postage calculator..60
Using an object to represent the request.................................62
Making sure the page is serializable..67
What if the input is invalid?..69

6 Enjoying Web Development with Wicket

Null input and validators...73
Validating the patron code..75
Displaying the error messages in red.......................................77
Displaying invalid fields in red..78
Creating a feedback label component......................................80
Validating a combination of multiple input values....................81
Pattern validator..84
Summary..84

Chapter 4 Creating an e-Shop..87
What's in this chapter?...88
Creating an e-shop...88
Listing the products..88
Using a model for the Labels..93
Showing the product details...94
Implementing a shopping cart..97
How Tomcat and the browser maintain the session..............103
The checkout function..106
Implementing the login function...108
Implementing the checkout function......................................113
Protecting a bunch of pages...118
Implementing logout...120
Summary..121

Chapter 5 Building Interactive Pages with AJAX......................123
What's in this chapter?...124
A sample AJAX application..124
Refreshing the question only..126
Refreshing the answer itself...129
Giving rating to a question..131
A common mistake with models...135
Making the form reusable...137
Using a modal window to get the rating.................................140
Having multiple questions...142
Falling back if Javascript is disabled......................................144
Summary..146

Chapter 6 Supporting Other Languages....................................147
What's in this chapter...148
A sample application..148
Supporting Chinese..148
An easier way to insert a localized message.........................154

Enjoying Web Development with Wicket 7

Internationalize the page content...156
Letting the user change the locale...158
Localizing the full stop..166
Displaying a logo..168
Localizing the logo..170
Creating Image components automatically............................172
Creating a license page..173
Creating PageLink components automatically.......................177
Observing the output encoding..178
Eliminating the Change button...178
Summary..180

Chapter 7 Using the DataTable Component............................183
What's in this chapter?...184
Creating a phone book...184
Listing the entries in alternating colors...................................186
Storing the styles in a file...188
Displaying the entries in pages..189
Sorting the entries..193
Setting the styles..195
Making the first name a link..196
Adding a delete button...198
Moving the page links to the bottom......................................199
Customizing the message in the NavigationToolbar..............201
Summary..202

Chapter 8 Handling File Downloads and Uploads...................203
What's in this chapter?...204
Downloading a photo..204
Reading the bytes from an arbitrary source...........................208
Reading the bytes from a file..209
Displaying a photo..210
Allowing users to bookmark a page.......................................211
Stateless vs stateful pages...215
setResponsePage() treating pages as stateful?....................216
Making the View link bookmarkable.......................................217
Using nice URL...219
Uploading a photo..221
<wicket:link> for bookmarkable pages...................................225
Summary..225

Chapter 9 Providing a Common Layout.....................................227

8 Enjoying Web Development with Wicket

What's in this chapter?...228
Providing a common layout..228
Using components in the abstract part...................................230
Turning the menu into a component......................................233
Using the Border component..234
Two varying parts?...237
Summary..242

Chapter 10 Using Javascript...243
What's in this chapter?...244
Are you sure to delete it?...244
Reusing the confirm button..246
Generating the call to Javascript at runtime...........................248
Using a namespace for the Javascript...................................250
Putting the Javascript into a file..251
Summary..254

Chapter 11 Unit Testing Wicket Pages......................................255
What's in this chapter?...256
Developing a calculator..256
Creating the Home page..257
Using setUp()..265
Providing a list of operators..266
Implementing minus...267
Unit testing the History page..268
Serialization error..272
Implementing the Clear link..274
Creating the default CalculationSource..................................277
Logging each calculation..278
Refactoring...281
Creating the default CalculationSink......................................282
Running all the tests...283
Implementing validation..284
Integration testing...286
Testing AJAX functions..290
Summary..296

Chapter 12 Developing Robust, Scalable & Maintainable 3-tier
Applications...299

What's in this chapter?...300
Developing a banking application...300
Setting up PostgreSQL...300

Enjoying Web Development with Wicket 9

Hard coding some bank accounts..308
Transferring some money..309
Using a transaction...312
Connection pooling...315
Concurrency issues..319
Business transaction..337
Dividing the application into layers...348
Reducing the size of the session...358
Summary..361

Chapter 13 Using Spring in Wicket..363
What's in this chapter?...364
Examining the gluing code...364
Using Spring to manage dependencies.................................365
Using the class of the field to look up the bean.....................371
Will a Spring bean be serialized?...372
Using Spring to simplify transaction handling........................373
Setting the default transaction isolation level.........................381
Unit testing a page that uses Spring beans...........................382
Stateful Spring beans...384
Summary..384

Chapter 14 Using JPA & Hibernate in Wicket..........................387
What's in this chapter?...388
Setting up Hibernate...388
Using JPA to access the database..388
Power of layering..395
Summary..395

Chapter 15 Deploying a Wicket Application.............................397
What's in this chapter?...398
Development mode..398
Distributing your application...400
Summary..401

References..403
Alphabetical Index..404

11

Chapter 1
Chapter 1 Getting Started with Wicket

12 Chapter 1 Getting Started with Wicket

What's in this chapter?
In this chapter you'll learn how to set up a development environment and
develop a Hello World application with Wicket.

Developing a Hello World application with Wicket
Suppose that you'd like to develop an application like this:

Installing Eclipse
First, you need to make sure you have Eclipse installed. If not, go to
http://www.eclipse.org to download the Eclipse platform (e.g., eclipse-
platform-3.1-win32.zip) and the Eclipse Java Development Tool (eclipse-
JDT-3.1.zip). Unzip both into c:\eclipse. Then, create a shortcut to run
"c:\eclipse\eclipse -data c:\workspace". This way, it will store your projects
under the c:\workspace folder. To see if it's working, run it and then you should
be able to switch to the Java perspective:

Installing Tomcat
Next, you need to install Tomcat. Go to http://tomcat.apache.org to download a
binary package of Tomcat. Download the zip version instead of the Windows
exe version. Suppose that it is apache-tomcat-6.0.13.zip. Unzip it into a folder,
say c:\tomcat. Note that Tomcat 6.x works with JDK 5 or above.

Chapter 1 Getting Started with Wicket 13

Before you can run it, make sure the environment variable JAVA_HOME is
defined to point to your JDK folder (e.g., C:\Program Files\Java\jdk1.5.0_02):

If you don't have it, define it now. Now, open a command prompt, change to
c:\tomcat\bin and then run startup.bat. If it is working, you should see:

Open a browser and go to http://localhost:8080 and you should see:

14 Chapter 1 Getting Started with Wicket

Let's shut it down by changing to c:\tomcat\bin and running shutdown.bat.

Installing Wicket
Next, go to http://wicket.apache.org to download a binary package of Wicket.
Suppose that it is apache-wicket-1.3.0.zip. Unzip it into a folder, say c:\wicket.

In addition, Wicket uses a few jar files from other projects. So, go to
http://www.agileskills2.org/EWDW/wicket/lib, download the jar files there and
put them into c:\wicket\lib.

That's it. You can't run it yet because Wicket is a library, not an application.

Creating a Hello Word application
Now, create a new Java project. Name it "MyApp" and make sure it uses a
separate output folder:

Chapter 1 Getting Started with Wicket 15

Set the output folder as shown below:

16 Chapter 1 Getting Started with Wicket

Finally, you should see the project structure:

The bin folder is useless so you can delete it. Then right click the project and
choose "Properties", choose "Java Build Path" on the left hand side, choose the
"Libraries" tab:

Chapter 1 Getting Started with Wicket 17

Click "Add Library" and choose "User Library":

Click "Next":

Click "User Libraries" to define your own Wicket library:

18 Chapter 1 Getting Started with Wicket

Click "New" to define a new one and enter "Wicket" as the name of the library:

Click "Add JARs", browse to c:\wicket\lib and add all the jar files there except
wicket-velocity-1.3.0.jar:

Then close all the dialog boxes. Next, create a new class named Hello in the
myapp.hello package:

Chapter 1 Getting Started with Wicket 19

Input the content like this:

This class represents a web page in your application. Here you'd like it to
display "Hello world". To do that, create a file Hello.html in the same folder as
Hello.java and input the content:

Now your page is done! How to display it? Create a class MyApp in the same
package:

This WebPage class is
provided by Wicket. It means
your Hello class represents a
web page.

They must be
in the same
folder

The content is
simply some
HTML code

20 Chapter 1 Getting Started with Wicket

You may notice that MyApp is marked as in error. This is because it must
implement an abstract method getHomePage(). Define it now:

If you're familiar with Eclipse, you may be tempted to use the "Add
unimplemented methods" quick fix to add the method:

But due to a bug probably in Eclipse, you will get a lot more methods:

This WebApplication class is
provided by Wicket. It means
your MyApp class represents a
web application.

package myapp.hello;

import org.apache.wicket.protocol.http.WebApplication;

public class MyApp extends WebApplication {
public Class getHomePage() {

return Hello.class;
}

}

The Hello class (page) is the home
page of this application, i.e., it is
the default page of the application.

Chapter 1 Getting Started with Wicket 21

So, don't do that. This problem only happens with the WebApplication class in
Wicket. Other classes are fine.

Next, you need to make the Wicket jar files available to this application at
runtime. To do that, create a lib folder under your context/WEB-INF folder and
then copy all the jar files in c:\wicket\lib except wicket-velocity-1.3.0.jar into
there:

Next, create a file web.xml in context\WEB-INF with the following content. This
file is called the "deployment descriptor":

22 Chapter 1 Getting Started with Wicket

Apart from the applicationClassName parameter, you can ignore the meaning
of the rest for now. To make this application run in Tomcat, you must register it
with Tomcat. To do that, create a file MyApp.xml in
c:\tomcat\conf\Catalina\localhost (create this folder if it doesn't yet exist):

Now, start Tomcat (by running startup.bat). To run your application, run a
browser and try to go to http://localhost:8080/MyApp/app. You should see:

<Context
docBase="c:/workspace/MyApp/context"
reloadable="true"/>

This file is called the "context descriptor".
It tells Tomcat that you have a web
application (yes, a web application is
called a "context").

MyApp.xml

Tell Tomcat that the
application's files can be found
in c:\workspace\MyApp\context

It tells Tomcat to reload this web
application if any of its class files
is changed

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/TR/xmlschema-1/"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">
<display-name>MyApp</display-name>
<filter>

<filter-name>WicketFilter</filter-name>
<filter-class>org.apache.wicket.protocol.http.WicketFilter</filter-class>
<init-param>

<param-name>applicationClassName</param-name>
<param-value>myapp.hello.MyApp</param-value>

</init-param>
</filter>
<filter-mapping>

<filter-name>WicketFilter</filter-name>
<url-pattern>/app/*</url-pattern>

</filter-mapping>
</web-app>

Tell Wicket that myapp.hello.MyApp is
the class of your web application. This
way, it will create an instance of this
class and launch it.

Chapter 1 Getting Started with Wicket 23

What does this URL mean? It is interpreted this way:

Generating dynamic content
Displaying "Hello World" is not particularly interesting. Next, you'll generate the
message dynamically in Java. First, modify Hello.html as:
<html>
Hello world
</html>

 is just a regular HTML element. It is used to enclose a section of HTML
code. Next, add an attribute to this span:

http://localhost:8080/MyApp/app

It represents your Wicket
application

This is called the "context path". It
is determined by the filename of
the context descriptor.

<Context
docBase="c:/workspace/MyApp/context"
reloadable="true"/>

MyApp.xml

24 Chapter 1 Getting Started with Wicket

Next, modify Hello.java:

When Wicket displays (i.e., renders) the Hello page, it will create a Hello page
object and its constructor will create the Label component and add it as a child.
Then the Hello page will basically output the code in Hello.html (check the
diagram below). When it finds that the span has a Wicket id of "subject", it will
look up its children to find a child with this id. Here it will find the Label. Then it
will ask the Label to render. The Label will print "John", while skipping the HTML
code in Hello.html until the tag is passed:

<html xmlns:wicket="http://wicket.apache.org">
Hello world!
</html>

This "id" attribute belongs to the
Wicket namespace
(http://wicket.apache.org/). What is
the effect of this id? You'll see
next.

Defines a prefix called "wicket". It is used
as a shorthand for the URL
http://wicket.apache.org in the rest of this
file. This URL here is used as a
namespace. It is like a Java package. In a
namespace, tag names and attribute
names are defined. For example:

http://wicket.apache.org

<panel>
<... id="...">

http://www.w3.org/TR/REC-html40

<p>
<... id="...">

In contrast, this is the HTML 4.0
namespace. It defines the tags
like <p> and etc.

import org.apache.wicket.markup.html.basic.Label;
public class Hello extends WebPage {

public Hello() {
Label s = new Label("subject", "John");
add(s);

}
}

Hello page

Component
"subject"

...

Create a Label component
whose id is "subject". It will
output the string "John".Add the Label

component to the Hello
page

Chapter 1 Getting Started with Wicket 25

Now run the application and you'll see:

As you can see, Hello.html is acting as a template for the Hello page. Each
dynamic part in the page is like a blank to be filled in and you just mark each
one using a Wicket id. So Hello.html is called the "template" or "markup" for the
Hello page. In addition, the ... element is said
to be "associated" with the "subject" component.

Common errors in Wicket applications
A very common error in Wicket applications is that for example, you have
wicket:id="subject" in the template and have created a "subject" component in
Java but forget to add it to the page:

<html xmlns:wicket="...">
Hello world
</html>

1: Look, just regular HTML/XML code

<html xmlns:wicket="...">
Hello John
</html>2: Output it

3: Look, it has
a wicket id 5: Output the

 tag (it
could optionally
modify the tag)

8: Regular
HTML/XML
code again

9: Output it

Hello page

Label "subject"

...

4: You have the
same id, so
render yourself.

value: John

6: Output the HTML
code for itself such
as "John", while
skipping the HTML
code until the
 tag is seen.

7: Output the
 tag

26 Chapter 1 Getting Started with Wicket

Then when you run the application, you'll get an exception (shown below).
Whenever you see an exception saying it can't find a component with a certain
id, check if you have really added the component to the page.

Another very common error is the opposite: You have added the component to
the page but forget to add wicket:id to the template:

Now when you run it, you'll get another exception (shown below). Whenever you
see an exception saying that a component failed to render, check if you have
really a wicket:id in the template.

<html xmlns:wicket="...">
Hello world
</html>

public class Hello extends WebPage {
public Hello() {

Label s = new Label("subject", "John");
add(s);

}
}

Forget to add it to the page!

<html xmlns:wicket="...">
Hello world
</html>

public class Hello extends WebPage {
public Hello() {

Label s = new Label("subject", "John");
add(s);

}
}

Forget to mark it as a
component!

Chapter 1 Getting Started with Wicket 27

Now, undo the changes to make sure the code still works.

More rigorous version of the template
Strictly speaking, Hello.html should really be:

This "strict" version complies with the so-called XHTML standard. In XHTML
people can introduce tags and attributes from foreign namespaces such as
those from the Wicket namespace, without making the document invalid.

Simpler version of the template
For simplicity, in this book we will not adhere to the strict XHTML. In fact, we will
strive to make the code as simple as possible. For example, we will even omit
the Wicket prefix declaration:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html

xmlns="http://www.w3.org/1999/xhtml"
xmlns:wicket="http://wicket.apache.org">

<head>
<title>hello</title>

</head>
<body>
<p>Hello world</p>
</body>
</html>

As no prefix is provided, it
means you'll use the following
namespace as the default
namespace.

This is the
XHTML
namespace

It declares that this document
is supposed to conform to the
XHTML standard

28 Chapter 1 Getting Started with Wicket

The application will continue to work.

Page objects are serializable
You may have noticed that there is a warning in Hello.java:

What does it mean? In Wicket page objects may be stored into the hard disk.
To do that, the WebPage class implements the Serializable interface. Therefore
your Hello class is also implementing Serializable. A rule in Java 5 states that
such a serializable class should define a version id like this:
public class Hello extends WebPage {

private static final long serialVersionUID = 1L;
public Hello() {

Label s = new Label("subject", "John");
add(s);

}
}

We won't explain the exact purpose of such a version id. However, you need to
know that such a version id is not strictly required. Therefore, for simplicity, we
will configure Eclipse to ignore this warning:

<html xmlns:wicket="http://wicket.apache.org">
Hello world
</html>

As long as you use "wicket" as
the prefix, Wicket will assume it
means the Wicket namespace.

Chapter 1 Getting Started with Wicket 29

Debugging a Wicket application
To debug your application in Eclipse, you need to set two more environment
variables for Tomcat and launch it in a special way:

Note that you're now launching it using catalina.bat instead of startup.bat. This
way Tomcat will run the JVM in debug mode and the JVM will listen for
connections on port 8000. Later you'll tell Eclipse to connect to this port. Now,
set a breakpoint here:

Choose "Debug":

30 Chapter 1 Getting Started with Wicket

The following window will appear:

Right click "Remote Java Application" and choose "New". Browse to select your
MyApp project and make sure the port is 8000:

Chapter 1 Getting Started with Wicket 31

Click "Debug" to connect to the JVM in Tomcat. Now go to the browser to load
the page again. Eclipse will stop at the breakpoint:

Then you can step through the program, check the variables and whatever. To
stop the debug session, choose the process and click the Stop icon:

32 Chapter 1 Getting Started with Wicket

Having to set all those environment variables every time is not fun. So, you may
create a batch file c:\tomcat\bin\debug.bat:
set JPDA_ADDRESS=8000
set JPDA_TRANSPORT=dt_socket
catalina jpda start

Then in the future you can just run debug.bat to start Tomcat in debug mode.

Summary
To develop a Wicket application, you can install Tomcat and Eclipse.

To install Wicket, just unzip it into a folder. It is just a bunch of jar files. Copy the
jar files into your context/WEB-INF/lib so that they are available to your web
application.

Each page in a Wicket application is implemented by two files: a Java class and
its template. They must be in the same folder. A Wicket application must
contain an application class. Its major purpose is to tell Wicket which is the Java
class for the home page. How does Wicket know which class is the application
class? You do it in web.xml.

To register a web application with Tomcat, you need to create a web.xml file
and a context descriptor to tell Tomcat where the application's files can be
found.

To use a Wicket application, you can enter a URL to ask Wicket to display the
home page.

When displaying a certain page, Wicket will create the page object and ask it to
render. The page object will read its HTML file (the template) and basically
output what's in the HTML file. But if there is a tag with a wicket id in the HTML
file, it will locate a child component with that id in the page (the component it is
associated with) and ask it to output HTML for itself.

A Label component will output the start tag as in the HTML file, then some plain

Chapter 1 Getting Started with Wicket 33

text as HTML code to replace the element body and finally the end tag.

A common error in Wicket applications is that you have wicket:id in the template
and have indeed created the component but forget to add the component to the
page. Another common error is the opposite: You have added the component to
the page but forget to add wicket:id in the template.

To debug a Wicket application, tell Tomcat to run the JVM in debug mode, set a
breakpoint in the Java code and make a Debug configuration in Eclipse to
connect to that JVM.

35

Chapter 2
Chapter 2 Using Forms

36 Chapter 2 Using Forms

What's in this chapter?
In this chapter you'll learn how to use forms to get input from the user.

Developing a stock quote application
Suppose that you'd like to develop an application like this:

That is, the user can enter the stock id and click OK, then the stock value will be
displayed. As a first step, you'll create the input page without the text field first.
Let's call this page GetQuoteSymbol. To do that, in your existing MyApp project,
create a GetQuoteSymbol class and GetQuoteSymbol.html in the
myapp.stockquote package:

Chapter 2 Using Forms 37

The next step is to display the result page. Let's call it QuoteResult. Create
QuoteResult.html and QuoteResult.java in the same package.
QuoteResult.html is:
<html>
The stock value is: 100.
</html>

QuoteResult.java is:

Now, to display this page on form submission, modify GetQuoteSymbol.java:

import org.apache.wicket.markup.html.form.Form;
public class GetQuoteSymbol extends WebPage {

public GetQuoteSymbol() {
Form form = new Form("f") {

protected void onSubmit() {
}

};
add(form);

}
}

This is an abstract method.
You must define it. It will be
called when the user submits
the form.

<html>
<form wicket:id="f">

<input type="submit" value="OK">
</form>
</html>

GetQuoteSymbol.html

GetQuoteSymbol.java

The <form> element is associated with a
Wicket component whose id is "f". You must
create that component in code:

It is a Form component in
Wicket

As always, you need to add the
component to the page.

This is just a normal
HTML submit button

The variable name
doesn't have to be "f".
It can be anything.

This is the full package name
of the Form class in Wicket

public class QuoteResult extends WebPage {
public QuoteResult(int stockValue) {

add(new Label("v", Integer.toString(stockValue)));
}

}

You need to pass the stock
value to the constructor

The id used in the
template

Convert the stock
value to a string

38 Chapter 2 Using Forms

Now, you're about to run the application. However, before that, you need to
modify MyApp.java to use GetQuoteSymbol as the home page:
public class MyApp extends WebApplication {

public Class getHomePage() {
return GetQuoteSymbol.class;

}
}

Now, run the application by going to http://localhost:8080/MyApp/app, you
should see:

Clicking OK will display:

So, it's working. Next, you'll add the text field. Modify GetQuoteSymbol.html and
GetQuoteSymbol.java:

public class GetQuoteSymbol extends WebPage {
public GetQuoteSymbol() {

Form form = new Form("f") {
protected void onSubmit() {

QuoteResult quoteResult = new QuoteResult(123);
setResponsePage(quoteResult);

}
};
add(form);

}
}

Create a QuoteResult page
and pass it an arbitrary stock
value for the moment

Display this page to the
browser

Chapter 2 Using Forms 39

How does it work? When the form renders itself (see the diagram below), after
modifying the <form> tag, it will render its body. When it sees the
wicket:id="sym", it will look up a child with id "sym" in itself, not in the page.
Therefore, you must add the text field to the form, not to the page. It will find the
symbol text field and ask it to render. To render itself, the text field will use its
model. A model is just a container holding a value. In this case, initially the value
is a string "MSFT". So, the text field gets the string "MSFT" from the model and
uses it as the initial value of the text field. In addition, it will also generate a
unique name for the <input> element:

import org.apache.wicket.markup.html.form.TextField;
import org.apache.wicket.model.Model;
public class GetQuoteSymbol extends WebPage {

public GetQuoteSymbol() {
Form form = new Form("f") {

protected void onSubmit() {
QuoteResult quoteResult = new QuoteResult(123);
setResponsePage(quoteResult);

}
};
Model model = new Model("MSFT");
TextField symbol = new TextField("sym", model);
form.add(symbol);
add(form);

}
}

<html>
<form wicket:id="f">

<input type="text" wicket:id="sym">
<input type="submit" value="OK">

</form>
</html> It is a TextField component in

Wicket

Use this object as the
"model". What does it
mean?

Add the text field to the form, not to
the page! Why?

40 Chapter 2 Using Forms

Suppose that the user changes the symbol from "MSFT" to "IBM" and clicks
OK, then the form component will get control. It will ask each of its children to
process the input. The text field will see what is the value of its unique name
(foo). Here it will find the string "IBM". Then it will store the string "IBM" into the
model. Finally, the form component will call its onSubmit() method as mentioned
earlier:

Now the symbol is stored into the model, you need to use it in onSubmit(). To
do that, you can store the model into a field:

GetQuoteSymbol

f

<form action="...">
<input type="text" value="MSFT"

name="foo">

<form wicket:id="f">
<input type="text" wicket:id="sym">
<input type="submit" value="OK">

</form>

1: Modify the
<form> tag, then
output my body.

2: Look, it has a
wicket id.

3: Look it up among
my child components
and tell it to render

sym
model:

4: What's the value in
there? Oh, it's "MSFT".

5: Use MSFT as the initial
value and generate some
unique name such as foo.

MSFT

foo: IBM

GetQuoteSymbol

f

sym
model:

2: Process the input

1: Request from the
browser is arriving

3: What is the value for
my name (foo)? Oh, it's
IBM.

4: Store "IBM"
into the model

5: Call my own
onSubmit()
method

MSFT
IBM

Chapter 2 Using Forms 41

Now run it and it should work:

public class GetQuoteSymbol extends WebPage {
private Model model;
public GetQuoteSymbol() {

Form form = new Form("f") {
protected void onSubmit() {

String sym = (String) model.getObject();
int stockValue = sym.hashCode() % 100;
QuoteResult quoteResult = new QuoteResult(stockValue);
setResponsePage(quoteResult);

}
};
Model model = new Model("MSFT");
TextField symbol = new TextField("sym", model);
form.add(symbol);
add(form);

}
}

Get the value from it. You know
it has to be a string because a
text field treats the input as a
string by default.

Normally you should find out
the stock value for the given
symbol. Here, you just get a
fake value: the hash code of
the symbol modulo 100.

It is now a field, not a
local variable.

42 Chapter 2 Using Forms

Mismatch in component hierarchy
As said before, because the the text field is in the body of the form component
in the template, you must add the text field to the form component in Java code.
That is, the component hierarchy in the template must match that in the Java
code:

What if you make a mistake:

Then when "a" tries to find a child "d", it will fail. Then you'll see the exception
(shown below) saying a component can't be found. It is the same exception you
saw in the previous chapter when you forgot to add a component to the page.
This time it is not because you forgot to add the component; it's because you
added it to the wrong parent.

Using a combo box
Suppose that you'd like to change the application so that the user will choose
from a list of stock symbols instead of typing in one:

a

b

c

d

Component hierarchies
must match

a

b

c

Component hierarchies
don't match

d

Chapter 2 Using Forms 43

To do that, modify GetQuoteSymbol.html:

Now the "sym" component should no longer be a TextField, but a
DropDownChoice:

Note that the DropDownChoice will actually check if it is associated with a
<select> tag. If not, it will throw an exception. Now run the application and it
should work:

<html>
<form wicket:id="f">

<select wicket:id="sym">
<option>MSFT</option>
<option>IBM</option>

</select>
<input type="submit" value="OK">

</form>
</html>

Use a <select>
instead of <input>

These options are here just for
preview only, e.g., when your
designer is designing this HTML file
using a tool like dreamweaver. They
will be completely replaced by the
output of the "sym" component.

public class GetQuoteSymbol extends WebPage {
private Model model;
public GetQuoteSymbol() {

Form form = new Form("f") {
protected void onSubmit() {

String sym = (String) model.getObject();
int stockValue = sym.hashCode() % 100;
QuoteResult quoteResult = new QuoteResult(stockValue);
setResponsePage(quoteResult);

}
};
model = new Model("MSFT");
List symbols = new ArrayList();
symbols.add("MSFT");
symbols.add("IBM");
symbols.add("RHAT");
DropDownChoice symbol = new DropDownChoice("sym", model, symbols);
TextField symbol = new TextField("sym", model);
form.add(symbol);
add(form);

}
}

Specify the available options as a
java.util.List

44 Chapter 2 Using Forms

Currently you're using "MSFT" as the default symbol. What if there is no
sensible default? You can just create the Model object without specifying any
value:
public class GetQuoteSymbol extends WebPage {

private Model model;

public GetQuoteSymbol() {
Form form = new Form("f") {

protected void onSubmit() {
String sym = (String) model.getObject();
int stockValue = sym.hashCode() % 100;
QuoteResult quoteResult = new QuoteResult(stockValue);
setResponsePage(quoteResult);

}
};
model = new Model("MSFT");
List symbols = new ArrayList();
symbols.add("MSFT");
symbols.add("IBM");
symbols.add("RHAT");
DropDownChoice symbol = new DropDownChoice("sym", model, symbols);
form.add(symbol);
add(form);

}
}

Then the initial value in the Model will be null. In that case, what will the initial
selected item in the DropDownChoice? When the value is null or is not one of
those on the list, it will show an extra item "Choose one":

If the user just clicks OK without choosing any value, the symbol will be null. So,
you need to check for it:
public class GetQuoteSymbol extends WebPage {

private Model model;

public GetQuoteSymbol() {
Form form = new Form("f") {

Chapter 2 Using Forms 45

protected void onSubmit() {
String sym = (String) model.getObject();
if (sym != null) {

int stockValue = sym.hashCode() % 100;
QuoteResult quoteResult = new QuoteResult(stockValue);
setResponsePage(quoteResult);

}
}

};
model = new Model();
List symbols = new ArrayList();
symbols.add("MSFT");
symbols.add("IBM");
symbols.add("RHAT");
DropDownChoice symbol = new DropDownChoice("sym", model, symbols);
form.add(symbol);
add(form);

}
}

If the symbol is indeed null, you will not call setResponsePage(). What will
happen then? Wicket will redisplay the page that handled the form submission,
i.e., your GetQuoteSymbol page. This is good because you'd like the user to
input the data again.

What if you'd like to display "Pick a symbol" instead of "Choose One"? You can
create a text file GetQuoteSymbol.properties in the same folder as
GetQuoteSymbol.java. Its content should be:

Here we say that "null" is the resource key. However, if you had two or more
DropDownChoice components in the GetQuoteSymbol page, this line would
affect all of them. To limit it to only the "sym" component, do it this way:

That is, you're qualifying the resource key using the id path to the component.
What if both entries are present? The unqualified entry will serve as the default;
if a qualified entry exists, it will override the unqualified one. Anyway, now run it
and it should work:

null=Pick a symbol

resource key string value

f.sym.null=Pick a symbol

This is the id path from the page to
the "sym" component. First, it goes to
the form "f", then go to "sym".

46 Chapter 2 Using Forms

If it doesn't work, make sure the application has been reloaded. For example,
you may make some trivial changes to a Java class to trigger a reload.

Inputting a date
Suppose that you'd like to allow the user to query the stock value on a particular
date:

To do that, modify GetQuoteSymbol.html:
<html>
<form wicket:id="f">

<select wicket:id="sym">
<option>MSFT</option>
<option>IBM</option>

</select>
on <input type="text" wicket:id="quoteDate">
<input type="submit" value="OK">

</form>
</html>

Define the "quoteDate" component in GetQuoteSymbol.java:

Chapter 2 Using Forms 47

The TextField component knows about a few common types such as
java.util.Date, java.lang.Integer and java.lang.Double. When its type parameter
is specified as Date.class, on rendering (see the diagram below) it will try to get
a Date object from the model, format it as a string and display it as the value in
the <input> field. When the user submits the form, it will get the <input> field
value (a string) and try to convert it back to a Date object and store it into the
model:

import java.util.Date;
public class GetQuoteSymbol extends WebPage {

private Model model;
private Model dateModel;
public GetQuoteSymbol() {

Form form = new Form("f") {
protected void onSubmit() {

String sym = (String) model.getObject();
Date date = (Date) dateModel.getObject();
if (sym != null) {

int stockValue = (sym + date.toString()).hashCode() % 100;
QuoteResult quoteResult = new QuoteResult(stockValue);
setResponsePage(quoteResult);

}
}

};
model = new Model();
List symbols = new ArrayList();
symbols.add("MSFT");
symbols.add("IBM");
symbols.add("RHAT");
DropDownChoice symbol = new DropDownChoice("sym", model, symbols);
form.add(symbol);
dateModel = new Model();
TextField quoteDate =

new TextField("quoteDate", dateModel, Date.class);
form.add(quoteDate);
add(form);

}
}

It tells the text field that the
value stored in the model is a
java.util.Date, not a string.

The value in the model is a
java.util.Date object, not a
string.

48 Chapter 2 Using Forms

Will it format a Date as mm/dd/yyyy or dd/mm/yyyy or something else? First, it
finds out the most preferred locale (language) of the browser. For example, in
FireFox, it is set in "Tools | Options | Advanced":

Click "Choose":

<input type="text" value="6/20/2007" ...>

quoteDate
model:

1: What's the Date value in there?

2: Format it as 6/20/2007
and output it

dateModel

Year: 2007
Month: 6
Day: 20

foo: 7/28/2007

3: Request from the
browser is arriving

4: Set the Date object accordingly Year: 2007
Month: 7
Day: 28

Chapter 2 Using Forms 49

This information is sent in every request. Then the TextField will ask Java for
the default date format for that locale. Now, run it and it should work:

Displaying feedback messages
What if the user enters some garbage like "abc" as the date (see the diagram
below)? The TextField will fail to convert it back to a Date object. In that case, it
will log an error message into a global list of messages. This list is stored in a
memory area allocated for each currently connected client. Such a memory
area is called the "session" for that client:

50 Chapter 2 Using Forms

To display the list of messages to the user, modify GetQuoteSymbol.html:
<html>

<form wicket:id="f">

<select wicket:id="sym">
<option>MSFT</option>
<option>IBM</option>

</select>
on <input type="text" wicket:id="quoteDate">
<input type="submit" value="OK">

</form>
</html>

Modify GetQuoteSymbol.java:
public class GetQuoteSymbol extends WebPage {

private Model model;
private Model dateModel;

public GetQuoteSymbol() {
FeedbackPanel feedback = new FeedbackPanel("msgs");
add(feedback);
Form form = new Form("f") {

protected void onSubmit() {
String sym = (String) model.getObject();
Date date = (Date) dateModel.getObject();
if (sym != null) {

int stockValue = (sym + date.toString()).hashCode() % 100;
QuoteResult quoteResult = new QuoteResult(stockValue);
setResponsePage(quoteResult);

}
}

};
model = new Model();
List symbols = new ArrayList();
symbols.add("MSFT");
symbols.add("IBM");
symbols.add("RHAT");
DropDownChoice symbol = new DropDownChoice("sym", model, symbols);
form.add(symbol);
dateModel = new Model();
TextField quoteDate = new TextField("quoteDate", dateModel, Date.class);
form.add(quoteDate);
add(form);

}
}

quoteDate

foo: abc

1: Request from the
browser (client 1) is
arriving

abc is invalid
Message list

Message list

2: Log an error
message

Session for client 1

Session for client 2

Chapter 2 Using Forms 51

The FeedbackPanel class is coming from Wicket. It will display all the
messages in the list (if there is no message, it will render nothing). Now, run the
application, enter "abc" as the date and click OK, you'll see:

In addition, note that the original values of the form fields are redisplayed
("MSFT" and "abc"), no matter they are valid or not. Besides, the onSubmit()
method of the form is not called. This happens when any of the form fields fails
to update the value in its model.

Will the error message hang around forever? No. Once it is rendered, it will be
deleted. To verify, just reload the page and the message will be gone.

What if you don't like the default error message? For example, you'd like to
display "You must input a date". To do that, modify GetQuoteSymbol.properties:

Now run it and it will work:

Marking input as required
Now the TextField will not accept garbage. But what if the user enters an empty

f.sym.null=Pick a symbol
f.quoteDate.IConverter.Date=You must input a date

Resource key

Id path to the form
component

52 Chapter 2 Using Forms

string? By default the TextField assumes that you're allowing the input to be
optional and will convert empty input to null (in this case as the Date object).
Then your code will crash at the code below:
public class GetQuoteSymbol extends WebPage {

private Model model;
private Model dateModel;

public GetQuoteSymbol() {
FeedbackPanel feedback = new FeedbackPanel("msgs");
add(feedback);
Form form = new Form("f") {

protected void onSubmit() {
String sym = (String) model.getObject();
Date date = (Date) dateModel.getObject();
if (sym != null) {

int stockValue = (sym + date.toString()).hashCode() % 100;
QuoteResult quoteResult = new QuoteResult(stockValue);
setResponsePage(quoteResult);

}
}

};
model = new Model();
List symbols = new ArrayList();
symbols.add("MSFT");
symbols.add("IBM");
symbols.add("RHAT");
DropDownChoice symbol = new DropDownChoice("sym", model, symbols);
form.add(symbol);
dateModel = new Model();
TextField quoteDate = new TextField("quoteDate", dateModel, Date.class);
form.add(quoteDate);
add(form);

}
}

To mark it as required, do it this way:
public class GetQuoteSymbol extends WebPage {

private Model model;
private Model dateModel;

public GetQuoteSymbol() {
FeedbackPanel feedback = new FeedbackPanel("msgs");
add(feedback);
Form form = new Form("f") {

protected void onSubmit() {
String sym = (String) model.getObject();
Date date = (Date) dateModel.getObject();
if (sym != null) {

int stockValue = (sym + date.toString()).hashCode() % 100;
QuoteResult quoteResult = new QuoteResult(stockValue);
setResponsePage(quoteResult);

}
}

};
model = new Model();
List symbols = new ArrayList();
symbols.add("MSFT");
symbols.add("IBM");
symbols.add("RHAT");
DropDownChoice symbol = new DropDownChoice("sym", model, symbols);
form.add(symbol);
dateModel = new Model();
TextField quoteDate = new TextField("quoteDate", dateModel, Date.class);
quoteDate.setRequired(true);
form.add(quoteDate);
add(form);

}
}

Chapter 2 Using Forms 53

Now, run it while setting the date to empty, you'll see:

Again, if you don't like the error message, you can change it:

If you'd like to keep the default message but would like to call the field "quote
date" instead of its component id ("quoteDate"):

You can do it this way:
f.sym.null=Pick a symbol
f.quoteDate.IConverter.Date=You must input a date
f.quoteDate.Required=The quote date is missing
f.quoteDate=quote date

Now run it and it will work:

You'd like to change it to
"quote date"

f.sym.null=Pick a symbol
f.quoteDate.IConverter.Date=You must input a date
f.quoteDate.Required=The quote date is missing

Resource key
Id path to the form
component

54 Chapter 2 Using Forms

If you decide to use your own error message, you can also refer to the field
name:
f.sym.null=Pick a symbol
f.quoteDate.IConverter.Date=You must input a date
f.quoteDate.Required=The ${label} is missing
f.quoteDate=quote date

You can also mark the "sym" DropDownChoice as required:
public class GetQuoteSymbol extends WebPage {

private Model model;
private Model dateModel;

public GetQuoteSymbol() {
FeedbackPanel feedback = new FeedbackPanel("msgs");
add(feedback);
Form form = new Form("f") {

protected void onSubmit() {
String sym = (String) model.getObject();
Date date = (Date) dateModel.getObject();
if (sym != null) {

int stockValue = (sym + date.toString()).hashCode() % 100;
QuoteResult quoteResult = new QuoteResult(stockValue);
setResponsePage(quoteResult);

}
}

};
model = new Model();
List symbols = new ArrayList();
symbols.add("MSFT");
symbols.add("IBM");
symbols.add("RHAT");
DropDownChoice symbol = new DropDownChoice("sym", model, symbols);
symbol.setRequired(true);
form.add(symbol);
dateModel = new Model();
TextField quoteDate = new TextField("quoteDate", dateModel, Date.class);
quoteDate.setRequired(true);
form.add(quoteDate);
add(form);

}
}

You may set the error message and field name:
f.sym.null=Pick a symbol
f.sym.Required=The ${label} is required
f.sym=stock symbol
f.quoteDate.IConverter.Date=You must input a date
f.quoteDate.Required=The ${label} is missing
f.quoteDate=quote date

Now, run the application again and it should work:

Chapter 2 Using Forms 55

Using the DatePicker
In fact, you can also allow the user to choose a date:

Clicking on the calendar icon will display a calendar:

To do that, modify GetQuoteSymbol.html:

56 Chapter 2 Using Forms

Modify GetQuoteSymbol.java:

Now, run it and it should work:

<html>
<head></head>
<body>

<form wicket:id="f">

<select wicket:id="sym">
<option>MSFT</option>
<option>IBM</option>

</select>
on <input type="text" wicket:id="quoteDate">
<input type="submit" value="OK">

</form>
</body>
</html>

The calendar needs to use Javascript to
work. The script will be put into the <head>
element. So you must have one in the
template.

If you have <head>, you
should have <body>,
otherwise the HTML will be
very much invalid.

import org.apache.wicket.extensions.yui.calendar.DatePicker;
import org.apache.wicket.util.convert.IConverter;
import org.apache.wicket.util.convert.converters.DateConverter;
public class GetQuoteSymbol extends WebPage {

...

public GetQuoteSymbol() {
FeedbackPanel feedback = new FeedbackPanel("msgs");
add(feedback);
Form form = new Form("f") {

protected void onSubmit() {
...

}
};
model = new Model();
List symbols = new ArrayList();
symbols.add("MSFT");
symbols.add("IBM");
symbols.add("RHAT");
DropDownChoice symbol = new DropDownChoice("sym", model, symbols);
symbol.setRequired(true);
form.add(symbol);
dateModel = new Model();
TextField quoteDate = new TextField("quoteDate", dateModel, Date.class);
quoteDate.setRequired(true);
quoteDate.add(new DatePicker());
form.add(quoteDate);
add(form);

}
} A DatePicker object is a "behavior". You're attaching it to the

"quoteDate" component. When the "quoteDate" component is
rendered or after it is rendered, a behavior will be given a chance to
output extra HTML code. Here, it will output the code to show the
calendar icon.

Chapter 2 Using Forms 57

Summary
The component hierarchy in the template must match that in Java code.
Otherwise you'll get a component not found exception.

To get input from the user, use a Form component and put some form
components in it. When the form is submitted, the onSubmit() method of the
Form component will be called. In that method(), to tell Wicket which page to
display next, call setResponsePage(). If you don't do that, Wicket will redisplay
the page containing the Form component.

Form components such as TextField and DropDownChoice will get the current
value from the model. When the form is submitted, each of them will get its
value and store it into the model. If any of them fails to convert the value, an
error message will be logged and the onSubmit() method won't be called.

You can customize the error message or the field name (label). The resource
key for the error message starts with the id of the form component. To display
error messages, you can use a FeedbackPanel. Once a message is rendered,
it will be removed.

A session is a memory area allocated on the server for each currently
connected client. The list of error messages is stored there.

A Form component can be marked as required. This way it won't accept empty
input and will treat it as an error.

A TextField by default deals with strings. However, you can tell it that the value
in the model is of a particular type such as java.util.Date. It knows a few
common types such as java.lang.Integer and java.lang.Double.

To allow the user to choose a date from a calendar, use the DatePicker
behavior. One or more behaviors can be added to a component to modify or
add to the HTML output of the component.

58 Chapter 2 Using Forms

Some components or behaviors such as DatePicker use Javascript. To work
with them, you need to have a <head> element in the template.

59

Chapter 3
Chapter 3 Validating Input

60 Chapter 3 Validating Input

What's in this chapter?
In the previous chapter you've learned some basic ways of input validation:
marking a field as required and specifying its data type. In this chapter you'll
learn more advanced ways to validate input.

Postage calculator
Suppose that you'd like to develop an application to calculate the postage for
sending a package from some place to another. The user will enter the weight
of the package in kg (check the screenshots below). Optionally, he can enter a
"patron code" identifying himself as a patron to get a certain discount. After
clicking OK, it will display the postage:

To do that, in your existing MyApp project, create a GetRequest class and
GetRequest.html in the myapp.postage package. GetRequest.html is like:
<html>
<form wicket:id="form">
<table>

<tr>
<td>Weight:</td>
<td><input type="text" wicket:id="weight"/></td>

</tr>
<tr>

<td>Patron code:</td>
<td><input type="text" wicket:id="patronCode"/></td>

</tr>
<tr>

<td></td>
<td><input type="submit"/></td>

</tr>
</table>
</form>
</html>

GetRequest.java is like:

Chapter 3 Validating Input 61

Next, create the ShowPostage page. ShowPostage.html is like:
<html>
The postage is 10.
</html>

ShowPostage.java is like:
public class ShowPostage extends WebPage {

public ShowPostage(int postage) {
add(new Label("postage", Integer.toString(postage)));

}
}

Now, you're about to run the application. However, before that, you need to
modify MyApp.java to use GetRequest as the home page:
public class MyApp extends WebApplication {

public Class getHomePage() {
return GetRequest.class;

}
}

Now, run the application by going to http://localhost:8080/MyApp/app, it should
work:

public class GetRequest extends WebPage {
private Model weightModel = new Model();
private Model patronCodeModel = new Model();
private Map patronCodeToDiscount;
public GetRequest() {

patronCodeToDiscount = new HashMap();
patronCodeToDiscount.put("p1", new Integer(90));
patronCodeToDiscount.put("p2", new Integer(95));
Form form = new Form("form") {

protected void onSubmit() {
int weight = ((Integer) weightModel.getObject()).intValue();
Integer discount = (Integer) patronCodeToDiscount

.get(patronCodeModel.getObject());
int postagePerKg = 10;
int postage = weight * postagePerKg;
if (discount != null) {

postage = postage * discount.intValue() / 100;
}
ShowPostage showPostage = new ShowPostage(postage);
setResponsePage(showPostage);

}
};
TextField weight = new TextField("weight", weightModel, Integer.class);
form.add(weight);
TextField patronCode = new TextField("patronCode", patronCodeModel);
form.add(patronCode);
add(form);

}
}

Models for the two input fields

Hard code some patrons and
their discounts. For example, for
the patron whose code is "p1",
the discount is 90% (i.e., 10%
off).

It has to be an Integer
object because you have
specified the type:

Use the patron
code to look up
the map to find
out his discount

For simplicity, assume the
postage per kg is $10 to
calculate the postage

Create a result page instance (you'll create
the page class next), pass the postage value
to it and set it as the response page.

62 Chapter 3 Validating Input

Using an object to represent the request
At the moment you're calculating the postage in the onSubmit() method:

Form form = new Form("form") {
protected void onSubmit() {

int weight = ((Integer) weightModel.getObject()).intValue();
Integer discount = (Integer) patronCodeToDiscount

.get(patronCodeModel.getObject());
int postagePerKg = 10;
int postage = weight * postagePerKg;
if (discount != null) {

postage = postage * discount.intValue() / 100;
}
ShowPostage showPostage = new ShowPostage(postage);
setResponsePage(showPostage);

}
};

This is no good. This kind of domain logic should go into a domain class. For
example, let's create a class to represent the request and let the request
calculate the postage itself:

Chapter 3 Validating Input 63

Now, GetRequest.java can be simplified:
public class GetRequest extends WebPage {

private Model weightModel = new Model();
private Model patronCodeModel = new Model();
private Map patronCodeToDiscount;

public GetRequest() {
patronCodeToDiscount = new HashMap();
patronCodeToDiscount.put("p1", new Integer(90));
patronCodeToDiscount.put("p2", new Integer(95));
Form form = new Form("form") {

protected void onSubmit() {
Request request = new Request(

((Integer) weightModel.getObject()).intValue(),
(String)patronCodeModel.getObject());

int weight = ((Integer) weightModel.getObject()).intValue();
Integer discount = (Integer) patronCodeToDiscount

.get(patronCodeModel.getObject());
int postagePerKg = 10;
int postage = weight * postagePerKg;
if (discount != null) {

postage = postage * discount.intValue() / 100;
}
ShowPostage showPostage = new ShowPostage(request.getPostage());
setResponsePage(showPostage);

}
};
TextField weight = new TextField("weight", weightModel, Integer.class);
form.add(weight);
TextField patronCode = new TextField("patronCode", patronCodeModel);
form.add(patronCode);
add(form);

}
}

Run the application and it should continue to work. Note that now you're

package myapp.postage;
public class Request {

private int weight;
private String patronCode;
private static Map patronCodeToDiscount;
static {

patronCodeToDiscount = new HashMap();
patronCodeToDiscount.put("p1", new Integer(90));
patronCodeToDiscount.put("p2", new Integer(95));

}
public Request(int weight, String patronCode) {

this.weight = weight;
this.patronCode = patronCode;

}
public int getPostage() {

Integer discount = (Integer) patronCodeToDiscount.get(patronCode);
int postagePerKg = 10;
int postage = weight * postagePerKg;
if (discount != null) {

postage = postage * discount.intValue() / 100;
}
return postage;

}
}

This code will be called when the
Request class is loaded by the
class loader. It is done once for
the class, not for each instance.

They are now attributes of the
request object

Calculate the postage
here, using its own
attributes.

64 Chapter 3 Validating Input

practically asking the user to edit the properties of a request object. In cases
like this, you can use another kind of model called PropertyModel (see the
diagram below). You have seen the Model class for the components. Actually,
all the components in Wicket work with an IModel interface. It declares the
getObject() and setObject() methods but obviously as an interface, it has no
implementation. The Model class implements the IModel interface and stores
the object in itself. The PropertyModel class is another implementation of
IModel. It has a target field pointing to another object (a Request object in your
case) and a property name ("weight" in this case). When you call getObject() on
it, it will call getWeight() on the Request object. Similarly, when you call
setObject(), it will call setWeight() on the Request object:

To implement this idea, modify GetRequest.java:

For this to work, you need to provide getters and setters for the weight and
patronCode in the Request class (actually it is not strictly necessary but you're
advised to do it):

public class GetRequest extends WebPage {
private Model weightModel = new Model();
private Model patronCodeModel = new Model();
private Request request = new Request(0, "");
public GetRequest() {

Form form = new Form("form") {
protected void onSubmit() {

Request request = new Request(
((Integer)weightModel.getObject()).intValue(),
(String)patronCodeModel.getObject());

ShowPostage showPostage = new ShowPostage(request.getPostage());
setResponsePage(showPostage);

}
};
TextField weight = new TextField("weight",

weightModel new PropertyModel(request, "weight"),
Integer.class);

form.add(weight);
TextField patronCode = new TextField("patronCode",

patronCodeModel new PropertyModel(request, "patronCode"));
form.add(patronCode);
add(form);

}
}

RequestCreate a request
object

weight: 0
patronCode: ""

Use a PropertyModel

The target object

The property name

Request
weight: 50
patronCode: p1

1: What's your value?

2: Call
getWeight() on it

IModel

getObject()
setObject(obj)

Model

obj: Object
PropertyModel

target:
property: "weight"

Chapter 3 Validating Input 65

public class Request {
private int weight;
private String patronCode;
private static Map patronCodeToDiscount;

static {
patronCodeToDiscount = new HashMap();
patronCodeToDiscount.put("p1", new Integer(90));
patronCodeToDiscount.put("p2", new Integer(95));

}
public Request(int weight, String patronCode) {

this.weight = weight;
this.patronCode = patronCode;

}
public String getPatronCode() {

return patronCode;
}
public void setPatronCode(String patronCode) {

this.patronCode = patronCode;
}
public int getWeight() {

return weight;
}
public void setWeight(int weight) {

this.weight = weight;
}
public int getPostage() {

Integer discount = (Integer) patronCodeToDiscount.get(patronCode);
int postagePerKg = 10;
int postage = weight * postagePerKg;
if (discount != null) {

postage = postage * discount.intValue() / 100;
}
return postage;

}
}

Now, run it and it should continue to work (except that you'll see that the weight
field will have 0 as the default):

66 Chapter 3 Validating Input

However, having to create a PropertyModel for each form component is still
quite a lot of work. If for all the components, their Wicket ids are the same as
the property names (which is the case here):
public class GetRequest extends WebPage {

private Request request = new Request(0, "");

public GetRequest() {
Form form = new Form("form") {

protected void onSubmit() {
ShowPostage showPostage = new ShowPostage(request.getPostage());
setResponsePage(showPostage);

}
};
TextField weight = new TextField("weight",

new PropertyModel(request, "weight"),
Integer.class);

form.add(weight);
TextField patronCode = new TextField("patronCode",

new PropertyModel(request, "patronCode"));
form.add(patronCode);
add(form);

}
}

Then you can further simplify the code (see the diagram below): Instead of
assigning a PropertyModel to each form component, you don't specify the
model (so it is null). As a replacement, you assign a CompoundPropertyModel
to the form itself. That CompoundPropertyModel in turn points to the Request
object. When a component such as the weight text field needs to access its
model but find that it's null, it will look for a CompoundPropertyModel in its
parent (or further up). Here it will find the CompoundPropertyModel in the form.
Then conceptually it will create a PropertyModel as its model, set the target to
the object pointed to by the CompoundPropertyModel and set the property
name to its Wicket id ("weight"):

Chapter 3 Validating Input 67

To implement this idea, modify GetRequest.java:

Now run it and it should continue to work.

Making sure the page is serializable
If you look at the Tomcat console, you should notice an exception when Tomcat
is trying to serialize your GetRequest page:

weight
model: null

form
model:

CompoundProperty
Model
obj: Request

1: What is my
model? Oh, it's null.

2: Is your model a
CompoundPropertyModel? Yes!

PropertyModel
target:
property: "weight"

3: Create a
PropertyModel

4: Set the target to the
object pointed to by the
CompoundPropertyModel

5: Set the property name
to my Wicket id

public class GetRequest extends WebPage {
private Request request = new Request(0, "");

public GetRequest() {
Form form = new Form("form", new CompoundPropertyModel(request)) {

protected void onSubmit() {
ShowPostage showPostage = new ShowPostage(request.getPostage());
setResponsePage(showPostage);

}
};
TextField weight = new TextField("weight", new PropertyModel(request,

"weight"),
Integer.class);

form.add(weight);
TextField patronCode = new TextField("patronCode", new

PropertyModel(request, "patronCode"));
form.add(patronCode);
add(form);

}
}

Assign a
CompoundProperty
Model to the form

Do not specify a
model

Let it point to the
Request object

68 Chapter 3 Validating Input

This is because the GetRequest page contains a Request object but the
Request object is not implementing Serializable. This prevents the GetRequest
page from being serialized. To solve the problem:
public class Request implements Serializable {

private int weight;
private String patronCode;
private static Map patronCodeToDiscount;

static {
patronCodeToDiscount = new HashMap();
patronCodeToDiscount.put("p1", new Integer(90));
patronCodeToDiscount.put("p2", new Integer(95));

}
public Request(int weight, String patronCode) {

this.weight = weight;
this.patronCode = patronCode;

}
public String getPatronCode() {

return patronCode;
}
public void setPatronCode(String patronCode) {

this.patronCode = patronCode;
}
public int getWeight() {

return weight;
}
public void setWeight(int weight) {

this.weight = weight;
}
public int getPostage() {

Integer discount = (Integer) patronCodeToDiscount.get(patronCode);
int postagePerKg = 10;
int postage = weight * postagePerKg;
if (discount != null) {

postage = postage * discount.intValue() / 100;
}
return postage;

}
}

Then you shouldn't see that exception again.

Chapter 3 Validating Input 69

What if the input is invalid?
At the moment if the user enters a negative number as the weight (e.g., -20), it
will go ahead and return a negative postage:

This is no good. Instead, you'd like the application to tell the user that the weight
is invalid:

Similarly, it should also check if the patron code is valid or not. For example, if
the user enters "p3", it should tell him that this code is not found:

Note that as the patron code is optional, if he doesn't enter anything, it should
NOT be treated as an error. In order to validate the user input, you can add one
or more validator objects to each form component (see the diagram below).
When the form is submitted, the form will ask each form component to convert

70 Chapter 3 Validating Input

the input string into the appropriate type (e.g., for the weight text field, the
converted input is an int). Then it will ask each form component to validate itself.
Suppose the weight text field has two validator objects. It will ask each one in
turn to validate the converted int value. If the type conversion fails (e.g., user
entered "abc" for the weight) or a validator fails, an error message will be logged
and no further processing will occur on that form component:

Now let's do it. Modify GetRequest.java:

Modify GetRequest.html to add the FeedbackPanel:
<html>

<form wicket:id="form">
<table>

<tr>
<td>Weight:</td>
<td><input type="text" wicket:id="weight"/></td>

weight

input: "20"
converted: 20

form

validator 1 validator 2

1: Convert the
input string

3: Validate the converted
input (int here)

4: Validate the converted
value (20)

5: Validate the converted
value (20)

patronCode

2: Convert the
input string

6: Validate the
converted input

public class GetRequest extends WebPage {
private Request request = new Request(0, "");

public GetRequest() {
add(new FeedbackPanel("feedback"));
Form form = new Form("form", new CompoundPropertyModel(request)) {

protected void onSubmit() {
ShowPostage showPostage = new ShowPostage(request.getPostage());
setResponsePage(showPostage);

}
};
TextField weight = new TextField("weight", Integer.class);
weight.add(new NumberValidator.MinimumValidator(0));
form.add(weight);
TextField patronCode = new TextField("patronCode");
form.add(patronCode);
add(form);

}
} Create a MinimumValidator object and then

add it to the text field. This class is defined
inside the NumberValidator class so the
syntax is a bit weird.

0 here is the minimum value. The
MinimumValidator object will check
if the type-converted input value (int)
is at least 0. Otherwise it will log an
error message.

Need a FeedbackPanel to display the error
message

Chapter 3 Validating Input 71

</tr>
<tr>

<td>Patron code:</td>
<td><input type="text" wicket:id="patronCode"/></td>

</tr>
<tr>

<td></td>
<td><input type="submit"/></td>

</tr>
</table>
</form>
</html>

Now run the application again and it should work:

At the moment you're explicitly creating a MinimumValidator object yourself. In
fact, there is a shortcut:
public class GetRequest extends WebPage {

private Request request = new Request(0, "");

public GetRequest() {
add(new FeedbackPanel("feedback"));
Form form = new Form("form", new CompoundPropertyModel(request)) {

protected void onSubmit() {
ShowPostage showPostage = new ShowPostage(request.getPostage());
setResponsePage(showPostage);

}
};
TextField weight = new TextField("weight", Integer.class);
weight.add(new NumberValidator.MinimumValidator(0));
weight.add(NumberValidator.minimum(0));
form.add(weight);
TextField patronCode = new TextField("patronCode");
form.add(patronCode);
add(form);

}
}

This minimum() method does exactly the same thing. It simply hides the
MinimumValidator class from you, i.e., you don't know what is the class of the
validator object. All you know is that it will check to make sure the input integer
is >= the minimum value specified. There is an overloaded minimum() method
that accepts a double value, which will create an appropriate validator object to
check double values.

Again, you can customize the error message by creating
GetRequest.properties:

72 Chapter 3 Validating Input

Make sure the application is reloaded. Then run it and it should work:

In addition to this validator, there are other similar ones making sure that the
input is not larger than a maximum value or is in a certain range. Here is a
summary:

Purpose Sample code Resource key
Make sure that the
input number is >= 10

NumberValidator.minimum(10) NumberValidator.minimum

Make sure that the
input number is <= 10

NumberValidator.maximum(10) NumberValidator.maximum

Make sure that the
input number is in the
range of 10-20
(inclusive)

NumberValidator.range(10, 20) NumberValidator.range

These are for numbers. There are similar ones for strings and dates:
StringValidator.minimumLength(10); //Resource key is StringValidator.minimum
StringValidator.maximumLength(10); //Resource key is StringValidator.maximum
StringValidator.lengthBetween(10, 20);//Resource key is StringValidator.range
DateValidator.minimum(...); //Resource key is DateValidator.minimum
DateValidator.maximum(...); //Resource key is DateValidator.maximum
DateValidator.range(...); //Resource key is DateValidator.range

Because it is very common to call minimum() with a 0 value, NumberValidator

form.weight.NumberValidator.minimum=${label} must be at least ${minimum} \
but you entered ${input}!

Resource keyId path to the form
component

The label of the field
("weight" in this case)

The minimum value stored in the
validator (0 in this case).
Actually, toString() will be called
on it to convert it to a string.

The value (string)
entered by the
user

If you need to enter multiple
lines as the value for a key,
you can enter a backslash
to tell it to continue with the
next line. Do NOT enter
anything after the
backslash!

Chapter 3 Validating Input 73

has a static validator object for use:
public class GetRequest extends WebPage {

private Request request = new Request(0, "");

public GetRequest() {
add(new FeedbackPanel("feedback"));
Form form = new Form("form", new CompoundPropertyModel(request)) {

protected void onSubmit() {
ShowPostage showPostage = new ShowPostage(request.getPostage());
setResponsePage(showPostage);

}
};
TextField weight = new TextField("weight", Integer.class);
weight.add(NumberValidator.minimum(0));
weight.add(NumberValidator.POSITIVE);
form.add(weight);
TextField patronCode = new TextField("patronCode");
form.add(patronCode);
add(form);

}
}

Now run it and it should continue to work.

Null input and validators
What if the user doesn't input anything as the weight? As mentioned in the
previous chapter, the text field will treat it as null. How will the minimum
validator handle this null value? It will let it pass and treat it as valid. Why? This
design is to allow the case when some input is optional, but if the user does
provide some input, then it must be validated. Here in this case, if you enter an
empty string as the weight:

The application will throw an exception because the property model can't store a
null into an int property (It could if it was an Integer property):

74 Chapter 3 Validating Input

In this case, you can simply solve the problem by marking the weight as
required:
public class GetRequest extends WebPage {

private Request request = new Request(0, "");

public GetRequest() {
add(new FeedbackPanel("feedback"));
Form form = new Form("form", new CompoundPropertyModel(request)) {

protected void onSubmit() {
ShowPostage showPostage = new ShowPostage(request.getPostage());
setResponsePage(showPostage);

}
};
TextField weight = new TextField("weight", Integer.class);
weight.setRequired(true);
weight.add(NumberValidator.POSITIVE);
form.add(weight);
TextField patronCode = new TextField("patronCode");
form.add(patronCode);
add(form);

}
}

Then the user will see:

Chapter 3 Validating Input 75

Validating the patron code
Now the weight field is working fine. How to validate the patron code? There is
no built-in validator suitable, so you can validate it in onSubmit():

Define the isPatronCodeValid() method in the Request class:
public class Request {

private int weight;
private String patronCode;
private static Map patronCodeToDiscount;

static {

public class GetRequest extends WebPage {
private Request request = new Request(0, "");
private TextField patronCode;
public GetRequest() {

add(new FeedbackPanel("feedback"));
Form form = new Form("form", new CompoundPropertyModel(request)) {

protected void onSubmit() {
if (!request.isPatronCodeValid()) {

patronCode.error("Patron code is invalid");
} else {

ShowPostage showPostage = new ShowPostage(request
.getPostage());

setResponsePage(showPostage);
}

}
};
TextField weight = new TextField("weight", Integer.class);
weight.setRequired(true);
weight.add(NumberValidator.POSITIVE);
form.add(weight);
TextField patronCode = new TextField("patronCode");
form.add(patronCode);
add(form);

}
} Log an error

message for this
component

In order to refer to this text field, it
needs to be an instance variable.

Message list

Session for client 1

Message Reporter
Patron code is invalid

"patronCode"
TextField

76 Chapter 3 Validating Input

patronCodeToDiscount = new HashMap();
patronCodeToDiscount.put("p1", new Integer(90));
patronCodeToDiscount.put("p2", new Integer(95));

}
...
public boolean isPatronCodeValid() {

return patronCode == null
|| patronCodeToDiscount.containsKey(patronCode);

}
}

What if you needed to input the patron code on different pages? Then you
would duplicate the validation code below in each page:

protected void onSubmit() {
if (!request.isPatronCodeValid()) {

patronCode.error("Patron code is invalid");
} else {

ShowPostage showPostage = new ShowPostage(request
.getPostage());

setResponsePage(showPostage);
}

}
In that case you should extract the code into a custom validator. For example,
create a PatronValidator class:

What is the error message? Just like all built-in validators, it will load the error

public class PatronCodeValidator extends AbstractValidator {
protected void onValidate(IValidatable validatable) {

if (!Request.isPatronCodeValid((String) validatable.getValue())) {
error(validatable);

}
}

}

This class is
provided by Wicket

The validatable here
represents the
patron code text field

Get the patron code
entered by the user
(type-converted)

Let the Request
class validate it

Log an error message for the
patron code text field. But
what is the message?

PatronCodeValidator.java

public class Request {
private int weight;
private String patronCode;
private static Map patronCodeToDiscount;

static {
patronCodeToDiscount = new HashMap();
patronCodeToDiscount.put("p1", new Integer(90));
patronCodeToDiscount.put("p2", new Integer(95));

}
...
public boolean isPatronCodeValid() {

return patronCode == null
|| patronCodeToDiscount.containsKey(patronCode);

}
public static boolean isPatronCodeValid(String patronCode) {

return patronCodeToDiscount.containsKey(patronCode);
}

}

Request.java

No longer need to check if it is
null. If it is null, the validator
will be skipped entirely!

Chapter 3 Validating Input 77

message using a resource key. By default, it will use the class name of the
validator as the resource key. So, modify GetRequest.properties:
form.weight.NumberValidator.minimum=${label} must be at least ${minimum} \

but you entered ${input}!
form.patronCode.PatronCodeValidator=Could not find patron: ${input}!

Use the validator in GetRequest.java:

Run it and it should work:

Displaying the error messages in red
Suppose that you'd like the error messages to be in red. To do that, view the
HTML code generated by the Feedback Panel:
<ul wicket:id="feedbackul">

<li wicket:id="messages" class="feedbackPanelERROR">
...

<li wicket:id="messages" class="feedbackPanelERROR">

...

public class GetRequest extends WebPage {
private Request request = new Request(0, "");
private TextField patronCode;

public GetRequest() {
add(new FeedbackPanel("feedback"));
Form form = new Form("form", new CompoundPropertyModel(request)) {

protected void onSubmit() {
if (!request.isPatronCodeValid()) {

weight.error("Patron code is invalid");
} else {

ShowPostage showPostage = new ShowPostage(request.getPostage());
setResponsePage(showPostage);

}
}

};
TextField weight = new TextField("weight", Integer.class);
weight.setRequired(true);
weight.add(NumberValidator.POSITIVE);
form.add(weight);
TextField patronCode = new TextField("patronCode");
patronCode.add(new PatronCodeValidator());
form.add(patronCode);
add(form);

}
} Use the validator

here

No longer need this

78 Chapter 3 Validating Input

To make the elements appear in red, all you need is to modify
GetRequest.html:

Now run it and it will work:

Displaying invalid fields in red
Suppose that you'd like to display the invalid fields in red:

<html>
<head>

<style type="text/css">
li.feedbackPanelERROR { color: red }

</style>
</head>
<body>

<form wicket:id="form">
<table>

<tr>
<td>Weight:</td>
<td><input type="text" wicket:id="weight"/></td>

</tr>
<tr>

<td>Patron code:</td>
<td><input type="text" wicket:id="patronCode"/></td>

</tr>
<tr>

<td></td>
<td><input type="submit"/></td>

</tr>
</table>
</form>
</body>
</html>

Define some styles These styles are called "CSS styles". CSS
stands for cascading style sheet.

The following style will be applied to only those
 elements whose "class" attributes have
the value of "feedbackPanelERROR"

Set the color of the list
items () to red

Chapter 3 Validating Input 79

To do that, modify GetRequest.html:

Define the components in GetRequest.java:

<html>
<head>

<style type="text/css">
li.feedbackPanelERROR { color: red }
td.invalidField { color: red }

</style>
</head>
<body>

<form wicket:id="form">
<table>

<tr>
<td wicket:id="weightLabel">Weight:</td>
<td><input type="text" wicket:id="weight"/></td>

</tr>
<tr>

<td wicket:id="patronCodeLabel">Patron code:</td>
<td><input type="text" wicket:id="patronCode"/></td>

</tr>
<tr>

<td></td>
<td><input type="submit"/></td>

</tr>
</table>
</form>
</body>
</html>

Make it a Wicket component. You
will use that component to add a
"class" attribute to the <td> tag if the
weight text field is invalid:

<td class="invalidField">...

This style class is defined there

80 Chapter 3 Validating Input

Now run it and it should work:

Creating a feedback label component
Note that the code for the weightLabel and that for the patronCodeLabel is very

public class GetRequest extends WebPage {
private Request request = new Request(0, "");
private TextField weight;
private TextField patronCode;
public GetRequest() {

add(new FeedbackPanel("feedback"));
Form form = new Form("form", new CompoundPropertyModel(request)) {

protected void onSubmit() {
ShowPostage showPostage = new ShowPostage(request.getPostage());
setResponsePage(showPostage);

}
};
WebMarkupContainer weightLabel = new WebMarkupContainer("weightLabel") {

protected void onComponentTag(ComponentTag tag) {
if (!weight.isValid()) {

tag.put("class", "invalidField");
}
super.onComponentTag(tag);

}
};
form.add(weightLabel);
WebMarkupContainer patronCodeLabel =

new WebMarkupContainer("patronCodeLabel") {
protected void onComponentTag(ComponentTag tag) {

if (!patronCode.isValid()) {
tag.put("class", "invalidField");

}
super.onComponentTag(tag);

}
};
form.add(patronCodeLabel);
TextField weight = new TextField("weight", Integer.class);
weight.setRequired(true);
weight.add(NumberValidator.POSITIVE);
form.add(weight);
TextField patronCode = new TextField("patronCode");
patronCode.add(new PatronCodeValidator());
form.add(patronCode);
add(form);

}
}

A WebMarkupContainer is a component that
basically does nothing special: It outputs the
start tag, the body (which could include
components) and the end tag. Usually you'll
use it to add attributes to the start tag.

isValid() will check if there is an error
message reported by the weight
component:

Message Reporter
Some error message..

"weight"
TextField

Add the "class" attribute
to the tag

This will output the tag

Process the start tag

Chapter 3 Validating Input 81

much similar. When you see such duplicate code, you should consider putting
the code into a component. Here, create a FeedbackLabel component:
public class FeedbackLabel extends WebMarkupContainer {

private FormComponent subject;
public FeedbackLabel(String id, FormComponent subject) {

super(id);
this.subject = subject;

}
protected void onComponentTag(ComponentTag tag) {

if (!subject.isValid()) {
tag.put("class", "invalidField");

}
super.onComponentTag(tag);

}
}

Use it in GetRequest.java:
public class GetRequest extends WebPage {

private Request request = new Request(0, "");

public GetRequest() {
add(new FeedbackPanel("feedback"));
Form form = new Form("form", new CompoundPropertyModel(request)) {

protected void onSubmit() {
ShowPostage showPostage = new ShowPostage(request.getPostage());
setResponsePage(showPostage);

}
};
TextField weight = new TextField("weight", Integer.class);
weight.setRequired(true);
weight.add(NumberValidator.POSITIVE);
form.add(weight);
FeedbackLabel weightLabel = new FeedbackLabel("weightLabel", weight);
form.add(weightLabel);
TextField patronCode = new TextField("patronCode");
patronCode.add(new PatronCodeValidator());
form.add(patronCode);
add(form);
FeedbackLabel patronCodeLabel = new FeedbackLabel("patronCodeLabel",

patronCode);
form.add(patronCodeLabel);

}
}

Now run it and it should continue to work.

Validating a combination of multiple input values
Suppose that for a particular patron p1, you will never ship a package that is
weighted more than 50kg. As this involves both the weight and the patron code
(two form components), you can't make a validator and assign it to a single form
component. In this case, you can make a "form validator" (see the diagram
below). After asking each form component to validate itself using its own
validators, the form will invoke its form validators one by one. Suppose the first
form validator is involved with the weight component and the patronCode
component, it will first check if they are valid so far, by checking if there are any
error messages for any of them. If yes, it will not do anything. If no, it will go
ahead to validate their combination:

82 Chapter 3 Validating Input

To implement this idea, create a LightValidator class as a form validator:

Define the error message in GetRequest.properties:

weight

form

1: Validate the
converted input

2: Validate the
converted input

patronCode

form
validator 1

form
validator 2

3: Validate the
combination of
converted input

Message list

Message Reporter
4: Is there an error for
the weight component
or the patron
component? No.

5: Check their
relation

public class LightValidator extends AbstractFormValidator {
private TextField weight;
private TextField patronCode;
public LightValidator(TextField weight, TextField patronCode) {

this.weight = weight;
this.patronCode = patronCode;

}
public FormComponent[] getDependentFormComponents() {

return new FormComponent[] { weight, patronCode };
}
public void validate(Form form) {

String patronCodeEntered = (String) patronCode.getConvertedInput();
if (patronCodeEntered != null) {

if (patronCodeEntered.equals("p1")
&& ((Integer) weight.getConvertedInput()).intValue() > 50) {

error(weight);
}

}
}

}

This is a form validator

Tell
AbstractFormValidator
that this validator involves
these two form
components, so that it
can check their individual
validity.

This method is called only after the
two related form components are
valid individually

Log an error message for the weight
component. You could do it for the
patronCode component instead. It's up
to you but the weight seems to be more
reasonable.

It could be null. Validate
only if it is p1. So ignore
it if it is null.

Chapter 3 Validating Input 83

Use this form validator in GetRequest.java:
public class GetRequest extends WebPage {

private Request request = new Request(0, "");

public GetRequest() {
add(new FeedbackPanel("feedback"));
Form form = new Form("form", new CompoundPropertyModel(request)) {

protected void onSubmit() {
ShowPostage showPostage = new ShowPostage(request.getPostage());
setResponsePage(showPostage);

}
};
TextField weight = new TextField("weight", Integer.class);
weight.setRequired(true);
weight.add(NumberValidator.POSITIVE);
form.add(weight);
TextField patronCode = new TextField("patronCode");
patronCode.add(new PatronCodeValidator());
form.add(patronCode);
add(form);
FeedbackLabel weightLabel = new FeedbackLabel("weightLabel", weight);
form.add(weightLabel);
FeedbackLabel patronCodeLabel = new FeedbackLabel("patronCodeLabel",

patronCode);
form.add(patronCodeLabel);
form.add(new LightValidator(weight, patronCode));

}
}

Run the application and it should work:

form.weight.LightValidator=${label0} for ${label1} ${input1} must be <= 50, \
but you enter ${input0}!

form.weight.NumberValidator.minimum=${label} must be at least ${minimum} \
but you entered ${input}!

form.patronCode.PatronCodeValidator=Could not find patron: ${input}!

Class name

The label for the
first component
("weight")

public class LightValidator extends AbstractFormValidator {
...
public FormComponent[] getDependentFormComponents() {

return new FormComponent[] { weight, patronCode };
}

}

The label for the
second
component
("patronCode")

The input for the
second
component ("p1")

The input for the
first component
(e.g., "60")

84 Chapter 3 Validating Input

Pattern validator
You have seen some validators checking the minimum, maximum or range of a
certain value (number, string or date). Another useful one is the pattern
validator. It checks if a string matches a "regular expression". For example, to
check if the input string is a name, i.e., consisting of one or more letters (a-z) or
digits:
new PatternValidator("\\w+");

in which \\ means a single backslash. Then \w means a word character (letter or
digit) and XXX+ means to expect XXX one or more times. To accept an empty
name, change it to:
new PatternValidator("\\w*");

in which XXX* means to expect XXX zero or more times. If you'd like to check if
the input string is a phone number like 123-4567:
new PatternValidator("\\d{3}-\\d{4}");

in which \d means a digit and XXX{3} means to expect XXX three times.

Summary
If a form component is used to edit a property of an object, you can use a
PropertyModel. If the Wicket id is the same as the property name, you can
simply use a CompoundPropertyModel with the form and not set the model of
the form component.

On form submission, the form will ask each form component to type convert the
input. Then it will ask each one to validate the converted input. You can add one
or more validators to a form component. They will be activated one by one. If
the input is found to be invalid, the validator will log an error message for that
form component. You can customize the error message using a properties file.
If the input is null, the validators will be skipped to allow optional input. Finally,
the form will invoke its form valdiators. They are useful for checking the
combination of two or more form input values. A form validator will be activated
only if the related form components have been found to be valid individually (no
error message for them).

Chapter 3 Validating Input 85

There are some built-in validators coming with Wicket to check if the value
(number, string or date) is not less than a minimum, not greater than a
maximum or in a range. There is also one checking if a string value matches a
regular expression.

A WebMarkupContainer is a boring component. It will basically output what's in
the template (it will render components in its body). It is commonly used when
all you need to do is to modify the attributes of the start tag.

When you see duplicate code for different components, consider creating a new
component class and put the code there.

	How to create AJAX web-based application easily?
	How this book can help you learn Wicket?
	Unique contents in this book
	Target audience and prerequisites
	Acknowledgments
	Chapter 1 Getting Started with Wicket
	Developing a Hello World application with Wicket
	Installing Eclipse
	Installing Tomcat
	Installing Wicket
	Creating a Hello Word application
	Generating dynamic content
	Common errors in Wicket applications
	More rigorous version of the template
	Simpler version of the template
	Page objects are serializable
	Debugging a Wicket application
	Summary

	Chapter 2 Using Forms
	Developing a stock quote application
	Mismatch in component hierarchy
	Using a combo box
	Inputting a date
	Displaying feedback messages
	Marking input as required
	Using the DatePicker
	Summary

	Chapter 3 Validating Input
	Postage calculator
	Using an object to represent the request
	Making sure the page is serializable
	What if the input is invalid?
	Null input and validators
	Validating the patron code
	Displaying the error messages in red
	Displaying invalid fields in red
	Creating a feedback label component
	Validating a combination of multiple input values
	Pattern validator
	Summary

