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Abstract

The relationship between Long Range Temporal Correlations (LRTC) from 
EEG oscillations and depression or depression-related emotion regulation 
strategies has been a focus of interest in the last few years and its demonstration 
through Detrended Fluctuation Analysis (DFA) has been determined by several 
authors. Despite this, a wide range of methods and procedures have been 
used to obtain these measures, leading to a large amount of hardly comparable 
results. In this review we summarize the main outcomes and find that there 
are consistencies between these studies, but also many inconsistencies that 
make obvious the need of a unified line of investigation. We also propose some 
suggestions for the future in order to improve our knowledge about LRTC and 
depression.

Keywords: Long range temporal correlations; EEG; Depression; Emotion 
regulation; Detrended fluctuation analysis

the amplitude of 10 and 20 Hz spontaneous neuronal oscillations 
by Linkenkaer-Hansen et al. [14]. This temporal structure indicates 
the presence of auto correlations that decay slowly and remain 
significant at time scales from seconds to minutes (i.e. a relatively 
long range of time). A feature of these correlations is their power-
law scaling behaviour which indicates that the underlying processes 
are not governed by a unique characteristic scale, thus allowing us 
to deduce that the process is self-similar. According to the theory of 
self-organized criticality [16], the fact that complex systems follow a 
power-law behaviour lead us to think in a common mechanism that 
brings the system into a critical state where it is self-organized during 
processing demands [14]. At present, there are several neuroscientists 
who consider the brain as a system which tends to self-organized 
criticality [17-20].

The Detrended Fluctuation Analysis (DFA) [21] is a non-
linear analysis technique that permits the detection of long range 
correlations in seemingly non-stationary time series, through the 
value of an exponent obtained from it, named scaling exponent α. 
This is a quantitative parameter that represents the autocorrelation 
properties of a time series. Since the studies reviewed in this paper 
use DFA to investigate LRTC in brain activity it is worth describing 
briefly how it works. First of all, the EEG signal is integrated, y (k), 
by a cumulative sum of the amplitude envelope. The envelope of an 
oscillating signal is a smooth line which outlines its extremes. Then, 
the integrated time series is divided into segments of equal length. 
The trend of each segment is obtained by a least-squares line and 
subsequently, the series is detrended by subtracting in each segment 
its local trend. The next step consists of dividing the detrended 
integrated signal into non-overlapping windows with different 
lengths equidistantly distributed on a logarithmic scale. For each 
window size n, the variance F2 (n) is calculated in the detrended 
signal. Finally, the slope of the line relating log F (n) and log n is 
the scaling exponent α. The presence of LRTC is proved by a scaling 
exponent 0.5 <α< 1, which indicates the data are correlated, such that 

Abbreviations
LRTC: Long Range Temporal Correlations; EEG: 

Electroencephalogram; DFA: Detrended Fluctuation Analysis; 
ER: Emotion Regulation; BDI: Beck Depression Inventory; HDRS: 
Hamilton Depression Ranting Scale; SCID: Structured Clinical 
Interview for DSM-IV; REM: Rapid Eye Movement; CERQ: Cognitive 
Emotion Regulation Questionnaire; WBSI: White Bear Supression 
Inventory; RRS: Ruminative Response Scale

Introduction
Depression is one of the most common and disabling disorders 

and the fact that EEG may be a useful tool for investigating brain 
regional mechanisms underlying depressive disorders, has already 
been noted by some authors [1-3]. For instance, Richard J. Davidson 
developed a model [4] that considers the role of the anterior brain 
asymmetry and suggests that differences in prefrontal asymmetry 
activation are a diathesis that biases the person’s affective style and 
modulates its vulnerability to develop depression. In addition to 
this model-based research (and other research studies based also 
on a linear perspective on EEG activity) a non-linear, complexity-
oriented research field has been growing during the last decades with 
the general purpose of obtaining a better comprehension of the brain 
dynamics. It is within this theoretical framework that several studies 
addressed the relationship between EEG Long Range Temporal 
Correlations (LRTC) and depression [5-10] and between LRTC and 
cognitive Emotion Regulation (ER) strategies commonly used by 
people with a depressive ER style [11,12]. This style is observed in 
individuals who engage in maladaptive cognitive ER strategies such 
as ineffective attempts to avoid or to suppress expressions of emotion 
and unwanted thoughts (e.g. brooding, rumination, suppression, etc).

Neural oscillations are known to show great variability and 
apparently random changes over time, even in resting state [13]. In 
recent years, the dynamical structure of EEG ongoing oscillations 
has been broadly studied [13-15]. LRTC were first demonstrated in 
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large fluctuations are likely to be followed by large fluctuations and 
small fluctuations are likely to be followed by small fluctuations. The 
presence of LRTC in EEG signals has been repeatedly reported by 
using DFA [5-7,11,12,14,15,22-24]. 

This paper is an attempt to review and unify the existent evidence 
that connects LRTC in EEG and depression. We used the following 
databases: Scopus, Web of Science, Google Scholar and Pub med. The 
terms considered in the searching process were:[‘long range temporal 
correlations’ OR‘ long range correlations’ OR ‘scaling’ OR ‘scaling 
exponents’ OR ‘detrended fluctuation analysis’]AND[‘depression’ 
OR ‘depressed’ OR ‘emotion regulation’ OR ‘emotion regulation 
strategies’]AND[‘EEG’]. Eight research studies satisfied these search 
criteria and were subsequently reviewed (Table 1). 

Current evidence
Most of these studies have focused on brain signals from depressed 

patients and healthy controls in resting or sleep conditions with eyes 
closed. Some of the procedure details (as the frequency band or the 
windows size selected) are only reported in the Table 1, in order to 
simplify and make the information more clear and schematic. Before 
we go any further, we should have in mind that the LRTC are more 
persistent, so decaying more slowly with time, as the scaling exponent 
increases from 0.5 toward 1.

Lee et al. [6] used EEG recordings taken during 5 min resting 
periods. To classify the subjects as depressed, the Beck Depression 
Inventory (BDI) [25] and the 17-item Hamilton Depression Ranting 
Scale (HDRS) [26] were used, as well as a DSM-IV interview. The 
scaling exponents of depressed patients had relatively higher values 
in whole brain regions in comparison to healthy controls, and a 
significant positive linear correlation was observed between the 
severity of depression and the exponents over most of the channels. 

On the other hand, Linkenkaer-Hansen et al. [5] used MEG 
recordings taken during 16 min resting periods. Participants were 
classified as depressed based on their scores on the 17-item HDRS 
and the Structured Clinical Interview for DSM-IV (SCID). Scaling 

exponents were larger in control participants than in depressed 
patients, and a significant negative linear correlation was observed 
between the severity of depression and the exponents of theta 
oscillations over the left temporocentral region. They also found 
a marginal, albeit significant, positive correlation between the 
exponents of alpha occipitoparietal oscillations and the depression 
scores.

Hosseinifard et al. [9] studied the utility of nonlinear analysis 
of resting EEG signals taken during 5 min, to discriminate between 
depressed and control subjects. For assessing the depression 
severity they used a DSM-IV interview and the BDI questionnaire. 
Unfortunately, the windows size selected is not available in this 
article. Though they studied several frequency bands, they found no 
significant differences in scaling exponents between both groups.

Recently, Bachmann et al. [10] used 5 min of resting EEG 
recordings from a sample of depressed and healthy women. The 
scaling exponents were calculated over the fitting range 0.1-1.1s. 
The 17-item HRDS and the ICD-10 criteria were used to classify the 
individuals as depressed. The exponents from the non-depressed 
were significantly higher than those from the depressed participants.

Leistedt et al. [7] focused on the sleep EEG from a sample of men 
with major depressive disorder and healthy controls. The patients 
were diagnosed according to DSM-IV-TR criteria and depressive 
symptoms were rated by means of the 24-item HRDS [27]. The 
exponents were lower during sleep stage 2 and slow wave sleep in 
the depressed group, and a negative linear correlation was observed 
between exponents and depression severity during slow wave sleep. 
They concluded that these results could be an explanation of the 
typical sleep fragmentation observed in major depressive episodes. 

In another study, Leistedt et al. [8] used also a sample of untreated 
depressed and healthy men, although the patients were in full to partial 
remission, and followed the same method described above to calculate 
DFA. Both remission statuses were assessed with the 24-item HRDS. 
They found no significant differences in scaling exponents between 

Study Condition Groups EEG Frequency Band Windows Size Main Findings

Linkenkaer-Hansen et al. [5] Resting D
ND

Theta (3 – 7 Hz)
Alpha (8 – 13 Hz) 5 – 100s

α D < α ND
Negative correlation α – DS  in theta

Small positive correlation α – DS in alpha

Lee et al. [6] Resting D
ND Broad (0.6 – 46 Hz) 0.1 - .06s α D > α ND

Positive correlation α – DS in broad band

Leistedt et al. [7] Sleep D men
ND men Broad (0.5 – 25 Hz) 0.16 – 2s SS2 & SWS: α D < α ND

Negative correlation α – DS in SS2 & SWS

Leidstedt et al. [8] Sleep DR men
ND men Broad (0.5 – 25 Hz) 0.16 – 2s No differences α D – α ND

Bornas et al. [11] Resting ND
Theta (3 – 7 Hz)
Alpha (8 – 13 Hz)
Broad (1 – 40 Hz)

1 – 6 s
0.1 – 0.6s Positive correlation α ND – ERS(-)

Hosseinifard et al. [9] Resting D
ND

Alpha (8 – 13 Hz)
Beta (13 – 30 Hz)
Delta (0.5 – 4 Hz)
Theta (4 – 8 Hz)

Not available No differences α D – α ND

Bachmann et al. [10] Resting D women
ND women Broad (0.3 – 70 Hz) 0.1 – 1.1s α D < α ND

Bornas et al. [11] Resting ND
SBD

Theta (3 – 7 Hz)
Alpha (8 – 13 Hz)
Broad (1 – 40 Hz)

1 – 6 s

0.1 – 0.6s

No differences α D – α SBD
Positive correlation α SBD – ERS(-)/DS in broad band

Negative correlation α SBD – ERS(-)/DS in alpha
Positive & negative correlation α SBD – ERS(-)/DS in theta

Table 1: Summary of the reviewed studies (sorted by publication year).

Note. D: Depressed; ND: Non-Depressed; α: Scaling Exponent; DR: Depression in Remission; SBD: Sub Clinically Depressed; DS: Depression Scores; SS2: Sleep 
Stage 2; SWS: Slow Wave Sleep; ERS (-): Negative Emotion Regulation Strategies.
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groups during the three sleep stages (2, slow wave sleep and REM). 
They argued this is a sign of similar underlying neuronal dynamics in 
both groups and also an argument in favor to the non-permanency of 
the LRTC modifications observed in depressed patients.

One open-question is whether changes in the EEG LRTC are 
linked with cognitive ER strategies commonly used by people with 
a depressive ER style even if they cannot be classified as clinically 
depressed. In an attempt to answer that question and to conciliate 
the two procedures used by Lee et al. [6] and Linkenkaer-Hansen et 
al. [5], Bornas et al. [11] carried out a study with a sample of non-
depressed individuals. The associations between LRTC of spontaneous 
oscillations and negative ER strategies related to depression were 
explored using two different correlational analyses. Following 
Linkenkaer-Hansen et al. [5] the DFA was performed on the theta 
band oscillations while resembling Lee et al. [6] the exponents of the 
broad band oscillations were calculated. The questionnaires were 
the Cognitive Emotion Regulation Questionnaire (CERQ) [28], the 
White Bear Suppression Inventory (WBSI) [29], and the Ruminative 
Response Scale (RRS) [30] to assess ER strategies, and the BDI-II [31] 
to assess depressive symptomatology. All correlations were positive, 
that means people more prone to engage in these strategies had 
higher scaling exponents.

Bornas et al. [12] tried to shed some light on the issue by 
exploring the associations between EEG LRTC and depression-
related ER strategies (brooding and supression) in a sample of 
sub clinically depressed and non-depressed individuals. They also 
focused on the relation between LRTC and depression severity on the 
sub clinically depressed participants. According to several authors 
[32,33], severely depressed and sub clinically depressed people 
share cognitive impairments and, probably, neural dysfunctions, 
though the latter perform quite normally on some cognitive tasks. 
DFA’s analyses were performed to the amplitude envelope of the 
broad, theta and alpha band spontaneous EEG oscillations and the 
procedure followed was equal from the one used by Bornas et al. [11]. 
The participants were asked to respond the WBSI, RRS and BDI-II 
questionnaires. Between-groups differences were not found but there 
were several linear correlations between LRTC and maladaptive ER 
strategies and severity of depression in the subclinically depressed 
group, in almost the whole brain. Thus, scaling exponents from broad 
band correlated positively with both strategies and depression, while 
scaling exponents from alpha band did it in a negative way. Theta 
band scaling exponents showed positive associations with brooding 
and depression at parietal sites, whereas correlated negatively with 
brooding and suppression at temporal regions. These findings suggest 
that alterations in brain dynamics are related with the proneness 
that depressive individuals show to engage in brooding and thought 
suppression.

Discussion and Conclusion
The importance of the relationship between EEG LRTC and 

depression has been highlighted during the last decade. Although 
the evidence in the field is growing and the DFA is the mostly used 
method to detect LRTC, the specific details like the range of window 
sizes or the frequency bands chosen in each studyare quite different, 
making results hardly comparable and reporting a large amount of 
inconsistent findings.

As we have seen, Lee et al. [6] found that scaling exponents from 
depressed patients were significantly higher than those from healthy 
controls, the opposite of the findings reported by Linkenkaer-Hansen 
et al. [5], Leistedt et al. [7] and Bachmann et al. [10]. Furthermore, 
Hosseinifard et al. [9] did not even find those differences; neither did 
Leidstedt et al. [8] with their sample of patients with depression in 
remission, nor Bornas et al. [12] with their sample of subclinically 
depressed individuals. There is also a wider variety of results 
regarding the association between the scaling exponents and the 
severity of depression, as well as the depression-related ER strategies, 
resulting in both positive and negative correlations. In this respect, 
one study reports positive linear correlations between exponents 
and depression severity [6], two studies show mostly negative linear 
correlations [5,7], and another one finds both positive and negative 
correlations between these variables [12]. Regarding the relationship 
between the exponents and the ER strategies, one of the studies finds 
positive linear correlation [11] whereas the other one reports both 
positive and negative linear correlations [12]. 

As we previously remarked, we need to be careful with this 
summary, taking into account the variety of procedures used in these 
studies. To start with, the wide range of windows of time used to 
calculate the scaling exponents is probably affecting the outcomes, 
as several authors have already pointed out [10-12]. Moreover, 
the studies mentioned have focused in the amplitude envelope of 
different EEG rhythms (broad, alpha, beta, delta, theta), thus we 
mostly have isolated results. To date, the only research that try to 
unify some of the procedures used to calculate DFA are the ones 
carried out by Bornas et al. [11,12], obtaining results that can help to 
clarify the issue. Additionally, the exploration of neuronal dynamics 
in subclinically depressed individuals and the depression-related 
ER strategies add some relevant information to the big picture since 
subclinical depression often precedes clinical depression [32,33] and 
the strategies above-mentioned have certainly an important role in 
depression [34-40]. In Bornas et al. [11] all correlations were positive 
for all frequency bands, being consistent with the results reported by 
Lee et al. [6] who calculated the scaling exponents in time windows 
of a similar length (seconds) and opposite to Linkenkaer-Hansen et 
al. [5], who calculated the exponents over minutes. They argued that 
the temporal correlations over short windows might correlate with 
ER strategies (cognitive processes) while LRTC over minutes might 
reflect depressive states, hence the opposite sign of the reported 
correlations (in theta band) would not be so surprising.Bornas et al. 
[12] found positive correlations between broad band exponents and 
both strategies and depression (similar to Lee et al. [6] and Bornas 
et al. [11]) and positive correlations between theta scaling exponents 
and depression, according to Bornas et al. [11]. However, they also 
found some results not reported previously: negative correlations 
between alpha scaling exponents and both depression and strategies, 
and between theta scaling exponents and ER strategies. They conclude 
that the different results observed in both studies could be due to the 
probable unnoticed inclusion of individuals with mild depression 
symptoms in the sample from Bornas et al. [11], since no screening 
measures were used to identify these individuals.Another point to take 
in consideration regarding the variety of results is the condition in 
which the EEG signals were recorded. All studies were done in resting 
conditions, excepting the ones from Leidstedt et al. [7,8] which were 
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performed during sleep. Finally, the instruments used to classify the 
subjects into groups and rate the depressive symptomatology severity 
can also be a point of differentiation, given that there are several 
studies that criticize the use of both instruments due to the modest 
association reported between their total scores [41,42]. 

Future research
Taking in consideration the broad range of outcomes derived 

from these studies, we propose a few future lines of research that may 
help to improve our current knowledge. First of all, it might be worthy 
to investigate which is the most relevant frequency bands implied 
in EEG dynamics related to depression and which are the most 
appropriate time windows to detect them. Having this information, 
research outcomes would probably be more comparable and thus 
more consistent findings should be expected. As previously stated, 
depression assessment has mainly been based on questionnaire 
measurements, as BDI or HRDS, and clinical interviews. The previous 
studies have only considered the depressive symptomatology level 
from people who suffer from major depressive disorder or subclinical 
depression, or healthy participants. In our opinion, with this 
procedure we can be missing important information derived from 
type of depression (unique episode or recidivate, dysthymia, bipolar 
depression) and hence losing nuances that could give us a key to 
understand the issue at hand. We should also consider the difference 
between depressive states and depressive processes, as for example 
the ER strategies above mentioned or attention biases. Bornas et 
al. [12] already went deeper into that when they suggested that the 
LRTC over short windows might be reflecting depressive processes 
(ER strategies) whereas LRTC over longer windows might be related 
with depressive state. Studying the mechanisms of these two concepts 
separately (states and processes) would be an essential target for the 
future since previous research seems to point to the fact that these 
mechanisms are different. Related to that, assessing the individuals 
not only in resting conditions but also while they are performing some 
cognitive task which implies worry or ruminative thoughts could 
deeply enrich the information about the depressive processes and its 
relationship with the EEG dynamics. To sum up, evidence presented 
here highlights the relation between EEG LRTC and depression and 
suggests that, in the future, LRTC could be an important feature to 
take into account in the assessment of depression. 
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